Skip to Content

Higher Order Conditioning – Definition and 5 Examples in Everyday Life

What is higher order conditioning

Higher order conditioning is a form of learning that occurs when a neutral stimulus is repeatedly paired with a conditioned stimulus, that is already associated with a desired response through conditioning, to become another conditioned stimulus itself.

Pavlovian conditioning or classical conditioning involves pairing a neutral stimulus with an intrinsically motivating unconditioned stimulus, or primary reinforcer, that can generate an unconditioned response. The neutral stimulus then becomes a conditioned stimulus that can elicit a conditioned response. This associative learning forms the first order association.

When paired with the conditioned stimulus generated in first-order conditioning, a new neutral stimulus acquires motivational value and becomes a second stimulus.

Second order stimulus can then be used to form yet another conditioned stimulus formed through higher order conditioning.

By following similar procedures, one can achieve higher order associative learning that is second-order or above​1​.

However, these higher-order associations tend to produce weaker associative strength.

dog waits to eat food in front of it

Animal learning & behavior

Higher order conditioning is commonly seen in animal learning.

When Ivan Pavlov gave dogs food (unconditioned stimulus) and bell (neutral stimulus) together, he observed that dogs salivated (conditioned response) even when they only heard the bell (first order stimulus) without the sight of food. The dogs learned to associate the sound of a bell with food.

Later, a new stimulus, light could be paired with the bell and the light alone (second-order stimulus) could elicit salivation, too, with no food present.

Higher order conditioning can be achieved when another neutral stimulus, such as a hand gesture, is paired with the tone to form a third conditioned stimulus​2​.

Sensory preconditioning

Sensory preconditioning is closely related to the higher order conditioning process. 

Sensory conditioning involves conditioning the stimuli among themselves before conditioning the unconditioned stimulus to one of them.

Using the preceding example, sensory preconditioning pairs the tone and light before conditioning the light with food​3​.

Implications for behavior

Fear conditioning

The “Little Albert” experiment by John Watson, a classical conditioning psychologist, was most famous for making an infant boy afraid of a white rat by making an unpleasant noise whenever the rat appeared.

When Watson conducted a higher order conditioning experiment, he discovered that he could also generalize the association so that Albert began to fear other furry animals and objects​4​. This is called stimulus generalization.

Mental health disorder

The re-experience of a traumatic event is a hallmark of posttraumatic stress disorder (PTSD).

PTSD may be maintained when trauma-relevant cues serve as conditioned stimuli through second order association to maintain fear responses. These trauma reminders generalize to enhance emotional responses to many previously neutral stimuli and cues, and prevent extinction​5​.

Conditioning in advertising

Commercials and political campaigns frequently make use of the effects of conditioning.

Many television and radio advertisements feature famous sportscasters whose voices have been associated with exciting sports events for years. Through repeated pairings of the voices with the advertised product, feelings of excitement or positivity may become associated with the product through second-order conditioning​6​ and evaluative conditioning.

Compulsive smoking

In the United States, the use of tobacco is one of the leading causes of preventable deaths.

Even though many smokers are motivated to quit, 95% relapse within a year after quitting. High order conditioning in smoking addiction may contribute to the difficulty of quitting completely.

When environmental cues are associated with nicotine, which is the unconditioned stimulus, the smoking-related stimuli become motivational salience even without explicit conditioning. 

Multiple drug exposures contribute to enhanced second-order conditioning. The external stimuli, serving as secondary reinforcers, can then evoke cravings and “nicotine wanting” through second-order conditioning in smokers​7​.

Taste aversion

Sensory-based memories of events help animals select the correct behaviors to adapt to their environment. This adaptive, complex behavior, however, can also cause problems at times. One example is taste aversion.

When ingesting a food is followed by malaise such as nausea or stomachache, a first-order aversive conditioning between the ingested substance’s taste and the negative consequences quickly forms. The animals are then conditioned to reject further ingestion as a result of this conditioning of fear​8​.

Various contextual cues, such as the color or shape of the food, can also elicit an aversive reaction if they are associated with the taste through second-order learning.


  1. 1.
    Gewirtz JC, Davis M. Using Pavlovian Higher-Order Conditioning Paradigms to Investigate the Neural Substrates of Emotional Learning and Memory. Learn Mem. Published online September 1, 2000:257-266. doi:10.1101/lm.35200
  2. 2.
    Barnet RC, Cole RP, Miller RR. Temporal integration in second-order conditioning and sensory preconditioning. Animal Learning & Behavior. Published online June 1997:221-233. doi:10.3758/bf03199061
  3. 3.
    Archer T, Sjödén PO. Higher-Order Conditioning and Sensory Preconditioning of a Taste Aversion with an Exteroceptive CS1. The Quarterly Journal of Experimental Psychology Section B. Published online February 1982:1-17. doi:10.1080/14640748208400886
  4. 4.
    Harris B. Whatever happened to little Albert? American Psychologist. Published online 1979:151-160. doi:10.1037/0003-066x.34.2.151
  5. 5.
    Wessa M PhD, Flor H PhD. Failure of Extinction of Fear Responses in Posttraumatic Stress Disorder: Evidence From Second-Order Conditioning. AJP. Published online November 2007:1684-1692. doi:10.1176/appi.ajp.2007.07030525
  6. 6.
    Nord WR, Peter JP. A Behavior Modification Perspective on Marketing. Journal of Marketing. Published online March 1980:36-47. doi:10.1177/002224298004400205
  7. 7.
    Bevins RA, Palmatier MI. Extending the Role of Associative Learning Processes in Nicotine Addiction. Behavioral and Cognitive Neuroscience Reviews. Published online September 2004:143-158. doi:10.1177/1534582304272005
  8. 8.
    Yamamoto T, Shimura T, Sako N, Yasoshima Y, Sakai N. Neural substrates for conditioned taste aversion in the rat. Behavioural Brain Research. Published online December 1994:123-137. doi:10.1016/0166-4328(94)90097-3


    * All information on is for educational purposes only. Parenting For Brain does not provide medical advice. If you suspect medical problems or need professional advice, please consult a physician. *